YES 0.852
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:
↳ HASKELL
  ↳ BR
mainModule FiniteMap
|  | ((foldFM_GE :: (Ordering  ->  b  ->  a  ->  a)  ->  a  ->  Ordering  ->  FiniteMap Ordering b  ->  a) :: (Ordering  ->  b  ->  a  ->  a)  ->  a  ->  Ordering  ->  FiniteMap Ordering b  ->  a) | 
module FiniteMap where
|  | import qualified Maybe import qualified Prelude
 
 
 | 
|  | data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a) 
 
 
 | 
|  | instance (Eq a, Eq b) => Eq (FiniteMap a b) where 
 
 | 
|  | foldFM_GE :: Ord a => (a  ->  b  ->  c  ->  c)  ->  c  ->  a  ->  FiniteMap a b  ->  c 
 
| foldFM_GE | k z fr EmptyFM | = | z |  
| foldFM_GE | k z fr (Branch key elt _ fm_l fm_r) |  | 
| | | key >= fr | = | 
| foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l |  |  
| | | otherwise | = |  |  |  
 | 
module Maybe where
|  | import qualified FiniteMap import qualified Prelude
 
 
 | 
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
mainModule FiniteMap
|  | ((foldFM_GE :: (Ordering  ->  a  ->  b  ->  b)  ->  b  ->  Ordering  ->  FiniteMap Ordering a  ->  b) :: (Ordering  ->  a  ->  b  ->  b)  ->  b  ->  Ordering  ->  FiniteMap Ordering a  ->  b) | 
module FiniteMap where
|  | import qualified Maybe import qualified Prelude
 
 
 | 
|  | data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b) 
 
 
 | 
|  | instance (Eq a, Eq b) => Eq (FiniteMap b a) where 
 
 | 
|  | foldFM_GE :: Ord c => (c  ->  b  ->  a  ->  a)  ->  a  ->  c  ->  FiniteMap c b  ->  a 
 
| foldFM_GE | k z fr EmptyFM | = | z |  
| foldFM_GE | k z fr (Branch key elt vw fm_l fm_r) |  | 
| | | key >= fr | = | 
| foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l |  |  
| | | otherwise | = |  |  |  
 | 
module Maybe where
|  | import qualified FiniteMap import qualified Prelude
 
 
 | 
Cond Reductions:
The following Function with conditions
| foldFM_GE | k z fr EmptyFM | = z | 
| foldFM_GE | k z fr (Branch key elt vw fm_l fm_r) | 
| | | key >= fr | 
| = | foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l |  |  | | | otherwise |  |  | 
is transformed to
| foldFM_GE | k z fr EmptyFM | = foldFM_GE3 k z fr EmptyFM | 
| foldFM_GE | k z fr (Branch key elt vw fm_l fm_r) | = foldFM_GE2 k z fr (Branch key elt vw fm_l fm_r) | 
| foldFM_GE1 | k z fr key elt vw fm_l fm_r True | = foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l | 
| foldFM_GE1 | k z fr key elt vw fm_l fm_r False | = foldFM_GE0 k z fr key elt vw fm_l fm_r otherwise | 
| foldFM_GE0 | k z fr key elt vw fm_l fm_r True | = foldFM_GE k z fr fm_r | 
| foldFM_GE2 | k z fr (Branch key elt vw fm_l fm_r) | = foldFM_GE1 k z fr key elt vw fm_l fm_r (key >= fr) | 
| foldFM_GE3 | k z fr EmptyFM | = z | 
| foldFM_GE3 | wv ww wx wy | = foldFM_GE2 wv ww wx wy | 
The following Function with conditions
| compare | x y | 
| | | x == y |  |  | | | x <= y |  |  | | | otherwise |  |  | 
is transformed to
| compare | x y | = compare3 x y | 
| compare2 | x y True | = EQ | 
| compare2 | x y False | = compare1 x y (x <= y) | 
| compare1 | x y True | = LT | 
| compare1 | x y False | = compare0 x y otherwise | 
| compare3 | x y | = compare2 x y (x == y) | 
The following Function with conditions
is transformed to
| undefined0 | True | = undefined | 
| undefined1 |  | = undefined0 False | 
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
mainModule FiniteMap
|  | (foldFM_GE :: (Ordering  ->  b  ->  a  ->  a)  ->  a  ->  Ordering  ->  FiniteMap Ordering b  ->  a) | 
module FiniteMap where
|  | import qualified Maybe import qualified Prelude
 
 
 | 
|  | data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a) 
 
 
 | 
|  | instance (Eq a, Eq b) => Eq (FiniteMap a b) where 
 
 | 
|  | foldFM_GE :: Ord a => (a  ->  b  ->  c  ->  c)  ->  c  ->  a  ->  FiniteMap a b  ->  c 
 
| foldFM_GE | k z fr EmptyFM | = | foldFM_GE3 k z fr EmptyFM |  
| foldFM_GE | k z fr (Branch key elt vw fm_l fm_r) | = | foldFM_GE2 k z fr (Branch key elt vw fm_l fm_r) |  
 | 
|  | 
| foldFM_GE0 | k z fr key elt vw fm_l fm_r True | = | foldFM_GE k z fr fm_r |  
 | 
|  | 
| foldFM_GE1 | k z fr key elt vw fm_l fm_r True | = | foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l |  
| foldFM_GE1 | k z fr key elt vw fm_l fm_r False | = | foldFM_GE0 k z fr key elt vw fm_l fm_r otherwise |  
 | 
|  | 
| foldFM_GE2 | k z fr (Branch key elt vw fm_l fm_r) | = | foldFM_GE1 k z fr key elt vw fm_l fm_r (key >= fr) |  
 | 
|  | 
| foldFM_GE3 | k z fr EmptyFM | = | z |  
| foldFM_GE3 | wv ww wx wy | = | foldFM_GE2 wv ww wx wy |  
 | 
module Maybe where
|  | import qualified FiniteMap import qualified Prelude
 
 
 | 
Haskell To QDPs
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
new_foldFM_GE(wz3, EQ, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
new_foldFM_GE(wz3, GT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, GT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz63, h, ba)
new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs.
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_foldFM_GE(wz3, GT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, GT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz63, h, ba)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_foldFM_GE(wz3, GT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, GT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, GT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, GT, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_foldFM_GE(wz3, EQ, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, EQ, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, EQ, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, EQ, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, EQ, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, LT, Branch(EQ, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, LT, Branch(LT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz63, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5
- new_foldFM_GE(wz3, LT, Branch(GT, wz61, wz62, wz63, wz64), h, ba) → new_foldFM_GE(wz3, LT, wz64, h, ba)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4, 5 >= 5